프로덕션 환경에서의 머신러닝 시스템 실패는 대부분 모델의 정확도 문제가 아닌, 인프라스트럭처와 운영 프로세스의 결함에서 기인합니다. Google의 "Hidden Technical Debt in Machine Learning Systems" 논문이 지적했듯, 실제 ML 코드 비중은 전체 시스템의 5% 미만입니다. 나머지 95%는 서빙 …
로 컬 주피터 노트북(Jupyter Notebook) 환경에서는 완벽하게 동작하던 모델이 프로덕션 환경에 배포되는 순간 ModuleNotFoundError 를 뱉어내거나, 추론(Inference) 속도가 현저히 느려지는 현상은 매우 흔한 문제입니다. 더 심각한 것은 배포 직후에는 성능이 좋다가 시간이 지날수록 정확도가 하락하는 '성능 부식(Per…